Abstract

Acoustic radiation force (ARF) is studied by considering an infinite elastic cylinder near an impedance boundary when the cylinder is illuminated by a Gaussian beam. The surrounding fluid is an ideal fluid. Using the method of images and the translation-addition theorem for the cylindrical Bessel function, the resulting sound field including the incident wave, its reflection from the boundary, the scattered wave from the elastic cylinder, and its image are expressed in terms of the cylindrical wave function. Then, we deduce the exact equations of the axial and transverse ARFs. The solutions depend on the cylinder position, cylinder material, beam waist, reflection coefficient, distance from the impedance boundary, and absorption in the cylinder. To analyze the effects of the various factors intuitively, we simulate the radiation force for non-absorbing elastic cylinders made of stainless steel, gold, and beryllium as well as for an absorbing elastic cylinder made of polyethylene, which is a well-known biomedical polymer. The results show that the impedance boundary, cylinder material, absorption in the cylinder, and cylinder position in the Gaussian beam significantly affect the magnitude and direction of the force. Both stable and unstable equilibrium regions are found. Moreover, a larger beam waist broadens the beam domain, corresponding to non-zero axial and transverse ARFs. More importantly, negative ARFs are produced depending on the choice of the various factors. These results are particularly important for designing acoustic manipulation devices operating with Gaussian beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call