Abstract

BackgroundAcoustic radiation force impulse (ARFI) imaging is a noninvasive imaging modality for quantitative assessment of tissue stiffness. This study utilized ARFI imaging to assess the stiffness of a transplant renal cortex within the first month after renal transplantation and to explore the correlation between the cortical stiffness and arterial resistance of the transplant kidney. MethodsForty renal transplant recipients (male/female = 26/14; mean age: 45.3 years; deceased donor/living related donor = 27/13) were included in this study. ARFI imaging with virtual touch tissue imaging quantification was applied to assess the stiffness of the transplant renal cortex by using a linear ultrasound transducer. Arterial resistance was acquired by spectral Doppler examination of the main artery and intrarenal arteries of the transplant kidney using a curvilinear ultrasound transducer. ResultsThe stiffness of transplant renal cortex was expressed as shear wave velocity (m/s). The mean value of cortical stiffness was 3.19 ± 1.01 m/s (range: 1.55–5.54). The stiffness of transplant renal cortex was positively correlated with the resistance index of the main renal artery (r = 0.55, P = .001), segmental artery (r = 0.43, P = .005), and interlobar artery (r = 0.42, P = .006). ConclusionThe stiffness of a transplant renal cortex is positively correlated with the arterial resistance of the renal transplant in the early post-transplant period. This result indicates that, in addition to renal fibrosis, the stiffness of the transplant renal cortex is also influenced by the hemodynamics of the transplant kidney.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.