Abstract

Experimental measurements were conducted around a right-angle wall to investigate the effect of this obstacle on sound propagation outdoors. Using small explosions as the source of the acoustic waves allowed reflected and diffracted arrivals to be discerned and investigated in detail. The measurements confirm that diffraction acts as a low-pass filter on acoustic waveforms in agreement with simple diffraction theory, reducing the peak pressure and broadening the waveform shape received by a sensor in the shadow zone. In addition, sensors mounted directly on the wall registered pressure doubling for nongrazing angles of incidence in line-of-sight conditions. A fast two-dimensional finite difference time domain (FDTD) model was developed and provided additional insight into the propagation around the wall. Calculated waveforms show good agreement with the measured waveforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call