Abstract

The low temperature acoustic properties of bulk metallic glasses measured over a broad range of frequencies rigorously test the predictions of the standard tunneling model. The strength of these experiments and their analyses is mainly based on the interaction of the tunneling states with conduction electrons or quasiparticles in the superconducting state. A new series of experiments at kHz and GHz frequencies on the same sample material essentially confirms previous measurements and their discrepancies with theoretical predictions. These discrepancies can be lifted by considering more correctly the line widths of the dominating two-level atomic-tunneling systems. In fact, dephasing caused or mediated by interaction with conduction electrons may lead to particularly large line widths and destroy the tunneling sytems' two-level character in the normal conducting state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.