Abstract

We have made reliable measurements of the sound velocity delta v/v(0) and internal friction Q(-1) in vitreous silica at 1.03, 3.74, and 14.0 kHz between 1 mK and 0.5 K. In contrast with earlier studies that did not span as wide a temperature and frequency range, our measurements of Q(-1) reveal a crossover (as T decreases) only near 10 mK from the T(3) dependence predicted by the standard tunneling model to a T dependence predicted if interactions are accounted for. We find good fits at all frequencies using a single interaction parameter, the prefactor of the interaction-driven relaxation rate, in contrast to earlier claims of a frequency dependent power law. We also show that the discrepancy in the slopes d(delta v/v(0))/d(log(10)T) below and above the sound velocity maximum (1: -1 observed, 1: -2 predicted) can be resolved by assuming a modified distribution of tunneling states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call