Abstract

In this paper, an adaptive fast multipole boundary face method is introduced to implement acoustic problems analysis of 3D solids with open-end small tubular shaped holes. The fast multipole boundary face method is referred as FMBFM. These holes are modeled by proposed tube elements. The hole is open-end and intersected with the outer surface of the body. The discretization of the surface with circular inclusions is achieved by applying several special triangular elements or quadrilateral elements. In the FMBFM, the boundary integration and field variables approximation are both performed in the parametric space of each boundary face exactly the same as the B-rep data structure in standard solid modeling packages. Numerical examples for acoustic radiation in this paper demonstrated the accuracy, efficiency and validity of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.