Abstract

Acoustic communications and positioning are vital aspects of unmanned underwater vehicle operations. The usage of separate units on each vehicle has become an issue in terms of frequency bandwidth, space, power, and cost. Most vehicles rely on acoustic modems transmitting frequency-hopped multiple frequency-shift keyed sequences for command-and-control operations, which can be used to locate the vehicle with a good level of accuracy without requiring extra signal transmission. In this paper, an ultrashort baseline acoustic positioning technique has been designed, simulated, and tested to locate an acoustic modem source in three dimensions using a tetrahedral, half-wavelength acoustic antenna. The position estimation is performed using the detection sequence contained in each message, which is a series of frequency-hopped pulses. Maximum likelihood estimation of azimuth and elevation estimation is performed using a varying number of pulse and various signal-to-noise ratios. Simulated and measured position estimation error match closely, and indicate that the accuracy of this system improves dramatically as the number of pulses processed increases, given a fixed signal-to-noise ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.