Abstract

Electron-phonon coupling is an important energy transfer mechanism in solids after ultrafast laser excitation. In this study, we present an extreme ultraviolet (EUV) and infrared (IR) pump-probe photoemission experiment to investigate the electron-phonon coupling in nonequilibrium gold. The energy of IR-laser-emitted photoelectrons is shifted due to the EUV photoemission and oscillates with a ∼4THz frequency. Such oscillation is considered as the effective excitation of the longitudinal acoustic phonon mode in gold through the spectral-dependent electron-phonon coupling. Our study showcases the capability of time-resolved photoemission electron microscopy to monitor the non-equilibrium lattice vibrations with ultrahigh spatial and temporal resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.