Abstract

The theory of free-carrier absorption (FCA) is given for monolayers of transition-metal dichalcogenides, particularly for molybdenum disulphide (MoS2), when carriers are scattered by phonons. Explicit expressions for the absorption coefficient α are obtained and discussed for acoustic phonon scattering via screened deformation potential and piezoelectric coupling taking polarization of the radiation in the plane of the layer. It is found that α monotonously decreases with the increasing photon frequency Ω, increases with the increasing temperature T, and linearly depends on two-dimensional electron concentration ns. Effect of screening, which is ignored in all the earlier FCA studies, is found to reduce α significantly, attributing to the larger effective mass of the electrons. Results are also obtained in the classical and quantum limit giving the power laws α ∼ Ω−2 and T. Comparison of the results is made with those in bulk semiconductors and semiconductor quantum wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.