Abstract

Abstract Kloser, R. J., Ryan, T. E., Young, J. W., and Lewis, M. E. 2009. Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. – ICES Journal of Marine Science, 66: 998–1006. Acoustic methods of characterizing micronekton communities (∼2 to 20 cm length) on the scale of an ocean basin could provide valuable inputs to ecosystem-based fishery management, marine planning, and monitoring the effects of climate change. The micronekton fish are important forage for top predators (e.g. tunas), and information on their diversity, distribution, size-structure, and abundance is needed to increase accuracy of top-predator distribution and abundance predictions. At the scale of an ocean basin, four years of Tasman Sea transects using a fishing vessel provide fine-scale maps of acoustic backscatter at 38 kHz that reveal detailed spatial patterns and structure to depths of 1200 m. Research-vessel data provide detailed biodiversity, density, size structure, and acoustic-scattering information from depth-stratified net sampling and a lowered acoustic probe. Wet-weight biomass estimates of the micronekton fish in the region vary considerably by a factor of 5–58 between acoustics (16–29 g m−2), nets (1.6 g m−2), and large spatial-scale, ecological models (0.5–3 g m−2). We demonstrate the potential and challenges of an acoustic basin-scale, fishing-vessel monitoring programme, including optical and net sensing, which could assist in characterizing the biodiversity, distribution, and biomass of the micronekton fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call