Abstract

This paper presents a single-phase switched reluctance motor (SRM) with skewed stator and rotor so that the acoustic noise and vibration have been significantly reduced. The motor has the same skew angle for both stator and rotor laminations. The main source of acoustic noise and vibration is the rapid change of radial magnetic force along the air gap between the stator and rotor poles. Since the radial force (RF) is most intensified on the stator yoke near the salient poles, the abrupt change of the RF can be mitigated by skewing the stator and/or rotor laminations. Therefore, the RF can be more distributed throughout the stator core, and in turn, the peak value of the RF is reduced. In this paper, the distribution of the RF with respect to the skew angles is analyzed through the finite-element method simulation to design a single-phase SRM with the significantly reduced vibration and noise. Based on the simulation results, prototype motors with three different skew angles (0°, 30°, and 64°) have been constructed and tested, validating that the proposed design is effective in mitigating acoustic noise and vibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.