Abstract

PurposeThe purpose of this paper is to apply a fast analytical model of the acoustic behaviour of pulse‐width modulation (PWM) controlled induction machines to a fractional‐slot winding machine, and to analytically clarify the interaction between space harmonics and time harmonics in audible electromagnetic noise spectrum.Design/methodology/approachA multilayer single‐phase equivalent circuit calculates the stator and rotor currents. Air‐gap radial flux density, which is supposed to be the only source of acoustic noise, is then computed with winding functions formalism. Mechanical and acoustic models are based on a 2D ring stator model. A method to analytically derive the orders and frequencies of most important vibration lines is detailed. The results are totally independent of the supply strategy and winding type of the machine. Some variable‐speed simulations and tests are run on a 700 W fractional‐slot induction machine in sinusoidal case as a first validation of theoretical results.FindingsThe influence of both winding space harmonics and PWM time harmonics on noise spectrum is exposed. Most dangerous orders and frequencies expressions are demonstrated in sinusoidal and PWM cases. For traditional integral windings, it is shown that vibration orders are necessarily even. When the stator slot number is not even, which is the case for fractional windings, some odd order deflections appear: the radial electromagnetic power can therefore dissipate as vibrations through all stator deformation modes, leading to a potentially lower noise level at resonance.Research limitations/implicationsThe analytical research does not consider saturation and eccentricity harmonics which can play a significant role in noise radiation.Practical implicationsThe analytical model and theoretical results presented help in designing low‐noise induction machines, and diagnosing noise or vibration problems.Originality/valueThe paper details a fully analytical acoustic and electromagnetic model of a PWM fed induction machine, and demonstrate the theoretical expression of main noise spectrum lines combining both time and space harmonics. For the first time, a direct comparison between simulated and experimental vibration spectra is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.