Abstract

This study investigates the effect of different skewing methods and angles for switched reluctance machines (SRM) having high pole count using multiphysics simulations. A 24/16 SRM is modeled for each skewing method and different skewing angles using 3D electromagnetic finite element analysis (FEA). Mechanical and acoustical analyses are performed to evaluate the effectiveness of different skewing methods. The results for each method are compared for the same torque levels. For Stator-only and Rotor-only skewing methods, torque output drops significantly, which reduces the effectiveness of these methods in achieving desired torque levels. However, implementing skewing on both the stator and rotor together has less impact on the torque production and has a significant impact on distributing the radial force on the stator back iron. Given an SRM designed to achieve 150kW of output power, multiphysics simulations predict a 10.5 dBA reduction in the acoustic noise for an optimized rotor/stator skewing angle of 13.5°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.