Abstract

Solid-state drives (SSDs), popular information storage devices, are typical printed circuit board assemblies (PCBA). As is true of other PCBAs, SSDs feature many multilayer ceramic capacitors (MLCCs). SSD vibration accompanied by high-pitched noise reflects the piezoelectric properties of MLCCs, and may cause great inconvenience to users. Here, we developed a finite element (FE) model predicting the vibration of the substrate associated with SSD acoustic noise. Because the SSD structure is complex and the model must be valid in the audible frequency range, we systematically constructed the model that is performed modal analysis. The excitation sources of the MLCCs were also modeled from a piezoelectric viewpoint, in which vibration analysis was performed in conjunction with the SSD model. Finally, the FE model was verified by comparing predicted and actual vibrations of an operational SSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.