Abstract
Natural gas storage in salt caverns requires fast injection / withdrawal cycles due to the increasing dynamics of the energy market. High rates induce rapid changes in the internal pressure of the stored gas causing important temperature changes susceptible to damage the rock salt mass. To experimentally observe this, the Starfish project aimed to characterize the damage caused by purely thermal stresses at the surface of a large bloc of rock in the salt mine of Varangéville (France). The objective was to determine the type of failure mechanism involved with repeated cooling stages. Since the salt is favourable to the generation of Acoustic Emissions (AE) and the propagation of stress waves, acoustic monitoring was chosen as one of the methods to follow the impact of the salt cooling. In addition to thermal and mechanical sensors, an acoustic monitoring device consisting of 16 ultrasonic sensors was installed on the free surface and in boreholes. It enabled to record and locate a large number of AE (58,426) located with good accuracy (2.5 cm). Those AE can be correlated to the evolution of salt fracturing. Acoustic activity is very intense at the start of each cooling cycle, then decreases with time to reach a very low level (background) after about 15 days. The average localisation depth reached by the AE is about 90 cm during the first cooling period. For subsequent cooling cycles, this depth is limited to 74 cm. These results show that the first cooling period is decisive, as it contains the strongest and deepest acoustic emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Rock Mechanics and Mining Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.