Abstract
The acoustic modes of a rotating fluid-filled cavity can be used to determine the effective rotation rate of a fluid (since the resonant frequencies are modified by the flows). To be accurate, this method requires a prior knowledge of the acoustic modes in rotating fluids. Contrary to the Coriolis force, centrifugal gravity has received much less attention in the experimental context. Motivated by on-going experiments in rotating ellipsoids, we study how global rotation and buoyancy modify the acoustic modes of fluid-filled ellipsoids in isothermal (or isentropic) hydrostatic equilibrium. We go beyond the standard acoustic equation, which neglects solid-body rotation and gravity, by deriving an exact wave equation for the acoustic velocity. We then solve the wave problem using a polynomial spectral method in ellipsoids, which is compared with finite-element solutions of the primitive fluid-dynamic equations. We show that the centrifugal acceleration has measurable effects on the acoustic frequencies when MΩ≳0.3, where MΩ is the rotational Mach number defined as the ratio of the sonic and rotational time scales. Such a regime can be reached with experiments rotating at a few tens of Hz by replacing air with a highly compressible gas (e.g., SF6 or C4F8).
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.