Abstract

Seeking for manifestations of superfluidity in 2D spin-aligned atomic hydrogen (H↓) adsorbed on the surface of liquid helium at T∼0.1 K we consider possible acoustic modes in this 2D Bose gas depending on frequency and on characteristic times of energy and momentum transfer. At high frequencies, the analogues of ordinary and second sound are realized in 2D H↓. At low frequencies, the 2D analogue of the fourth sound is realized: the normal component of hydrogen and ripplons are immobile and only the superfluid component of hydrogen participates the oscillations. We also estimate the rate of momentum relaxation between superfluid hydrogen and ripplons, τHR−1∝T13/3. The most promising for observing the superfluidity in 2DH↓ is the fourth sound, which could be excited, e.g., by ESR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.