Abstract

High-accuracy speech recognition is especially challenging when large datasets are not available. It is possible to bridge this gap with careful and knowledge-driven parsing combined with the biologically inspired CNN and the learning guarantees of the Vapnik Chervonenkis (VC) theory. This work presents a Shallow-CNN-HTSVM (Hierarchical Tree Support Vector Machine classifier) architecture which uses a predefined knowledge-based set of rules with statistical machine learning techniques. Here we show that gross errors present even in state-of-the-art systems can be avoided and that an accurate acoustic model can be built in a hierarchical fashion. The CNNHTSVM acoustic model outperforms traditional GMM-HMM (Gaussian Mixture Model - Hidden Markov Model) models and the HTSVM structure outperforms a MLP multi-class classifier. More importantly we isolate the performance of the acoustic model and provide results on both the frame and phoneme level, considering the true robustness of the model. We show that even with a small amount of data, accurate and robust recognition rates can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.