Abstract

A mixing technique based on bubble-induced acoustic microstreaming principle was developed. A mixer consists of a piezoelectric disk that is attached to a reaction chamber, which has a set of air bubbles with desirable size trapped in the. solution. Fluidic experiments showed that air bubbles resting on a solid surface and set into vibration by the sound field generated circulatory flows, resulting in global convection flows and thus rapid mixing. The time to fully mix a 100 /spl mu/L chamber is significantly reduced from hours (diffusion-only) to tens of seconds. CFD modeling showed that the induced flowfield and thus degree of mixing strongly depends on bubble positions. Immuno-magnetic cell capture experiments showed acoustic microstreaming provided efficient mixing of bacterial cell (E. coli K12) matrix suspended in blood with magnetic capture beads, resulting highly effective immuno-magnetic cell capture. Bacterial viability assay experiments showed that acoustic microstreaming has a relatively low shear strain field since the blood cells and bacteria remained intact after mixing: Acoustic microstreaming has many advantages over most existing chamber micromixing techniques, including simple apparatus, ease of implementation, low power consumption (2 mW), and low cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.