Abstract

The standard method for the calibration of audiometric bone vibrators requires the use of an artificial mastoid, a device that converts vibratory energy to an electrical analog. The mechanical input impedance of the device is designed to represent the average mechanical impedance of the human head. For calibration purposes, it is not necessary that the coupling device represent the impedance of the head. It is only necessary that it provides a repeatable measurement of the output of the vibrator that can be related to the normal threshold of hearing at each test frequency. In addition to the mechanical output that serves as the stimulus for the hearing test, bone vibrators produce an acoustic signal that is proportional to the mechanical force delivered to the head. By determining the transfer function relating the acoustic sound pressure to the mechanical force, the acoustic signal can serve as a proxy for the vibratory stimulus. This article describes the design and validation of an acoustic coupler for the calibration of audiometric bone vibrators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call