Abstract

Tuning the mass density and bulk modulus independently is the key to manipulate the propagation of sound wave. Acoustic metamaterials provide a feasible method to realize various acoustic parameters. However, the relevant studies are mainly concentrated in air, and the huge impedance difference makes it difficult to directly extend these airborne structures to underwater application. Here, we propose a metafluid to realize independent manipulation of the mass density and bulk modulus underwater. The metafluid is composed of hollow regular polygons immersed in the water. By adjusting the side number of the hollow regular polygons and choosing proper materials, the effective mass density and bulk modulus of the metafluid could be modulated independently. Based on the flexible adjustment method, metafluids with same impedance but different sound velocities are designed and used to realize an underwater impedance-matched gradient index lens. In addition, by combining the proposed metafluid with other artificial structures, acoustic parameters with great anisotropy can be achieved, which is exemplified by the design and demonstration of an impedance-matched underwater acoustic carpet cloak. This work can expand the practicability of underwater metamaterials and pave the way for future potential engineering applications in the practical underwater devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call