Abstract

Distributed underwater sensors are expected to provide oceanographic monitoring over large areas. As fabrication technology advances, low cost sensors will be available for many uses. The sensors communicate to each other and are networked using acoustic communications. This paper first studies the performance of such systems for current measurements using tomographic inversion approaches to compare with that of a conventional system which distributes the sensors on the periphery of the area of interest. It then proposes two simple signal processing methods for ocean current mapping (using distributed networked sensors) aimed at real-time in-buoy processing. Tomographic inversion generally requires solving a challenging high dimensional inverse problem, involving substantial computations. Given distributed sensors, currents can be constructed locally based on data from neighboring sensors. It is shown using simulated data that similar results are obtained using distributed processing as using conventional tomographic approaches. The advantage for distributed systems is that by increasing the number of nodes, one gains a much more improved performance. Furthermore, distributed systems use much less energy than a conventional tomographic system for the same area coverage. Experimental data from an acoustic communication and networking experiment are used to demonstrate the feasibility of acoustic current mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call