Abstract

Precise manipulation of microparticles in microchannels is a primary technique for numerous lab-on-a-chip bioengineering research and applications, as it determines the chip’s functions and analytical results. Acoustic manipulation, using the acoustic radiation force, is a compact, versatile and contactless manipulation technique, which can be easily integrated with other microfluidic components. It is our main purpose to report the effect of boundary condition of a cylindrical microfluidic cavity on the acoustic particles’ manipulation. A device consisting of a cylindrical cavity in a silicon wafer with three kinds of top boundary conditions (rigid, soft, and imperfect rigid boundary) has been built. The corresponding distributions of acoustic radiation force are analyzed analytically and numerically. Experiments are performed with 2.5 μm radius polystyrene microspheres in the cavity covered by three reflective layers (340 μm-thick glass, 400 μm-thick PDMS, and 660 μm-thick glass film), respectively, which specify the three different boundary conditions at the top of the cavity. It is demonstrated that the boundary condition of a cavity influences the acoustic radiation force and the stable positions of particles, and this is in agreement with the theoretical predictions. Thus, the effects of boundary conditions need to be considered for precise acoustic manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.