Abstract
Localizing an intruder submerged in a strongly scattering medium, such as a dense granular suspension, is a practical challenge. Here we extract the coherent ultrasonic echo from a steel ball submerged in a dense glass-bead packing saturated by water, by using a standard single-element ultrasonic transducer thanks to a configuration averaging process. Different configurations of the granular packing are created by the nonaffine motion of the beads with a mixing blade, akin to the Brownian motion, in the vicinity of the intruder. We investigate the efficiency of this process to reduce the so-called material noise from multiply scattered ultrasound, as a function of the configuration number, the shear rate and the blade-intruder distance. Nonaffine motions of the beads in the shear zone induced by the blade are then analyzed on the basis of a split-bottom rotating shear cell. This method helps to develop not only ultrasonic imaging tools of buried objects in turbid marine sediments, but also the local rheology based on a ball falling monitored by ultrasonic tracking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.