Abstract

We investigate acoustic levitation in a vertical standing wave in an attempt to understand the basic physical mechanism responsible for this phenomenon. We find that a description in terms of a simple pressure force leads to the prediction of stable equilibria that occur slightly below the anti-nodes of the standing pressure wave. We then demonstrate that such a prediction is at odds with experimental data, which show that levitating particles come to rest slightly below the nodes of the standing pressure wave. Finally, we outline a theoretical approach based on fluid dynamics that correctly predicts the locations of the levitating particles, which leads to a simple qualitative description for this fascinating phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.