Abstract

Relatively balanced load and velocity related pressure waves from the rearward facing surface of each rotor blade, are at a frequency of 1 cycle per revolution of the turbine and are phase shifted by 120 degrees from each other. The superposition of these infrasonic waves destructively interfere. This action results in a non-propagating rotor locked mode; however, the shielding (reflecting) effect of the tower as each blade passes, interrupts the balanced destructive interference for a small portion of rotor angle three times per revolution. The momentary un-balance between the destructive interfering waves results in the generation of Tyler-Sofrin spinning mode series, which propagate into the far field. The spinning mode radiation angles, coupled with the low decay rate of infrasound, result in higher far field sound pressure levels than would be predicted for a point source. An analysis approach partially derived from Tyler-Sofrin (1962) is presented. Field microphone data including phase measurements identifying spinning modes are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.