Abstract
The present study aims to investigate the effect of an acoustic field on the internal circulation and evaporation of three distinct combinations of twin methanol drops. The drop combinations used for making twin drops are (i) methanol and water (i.e., 15% and 75% of methanol), (ii) pure methanol, (iii) one pure methanol, and methanol-water (15 % and 75 % of methanol). The studies are conducted for two different drop spacings of 0.5 and 1.5 cm. The results suggest that the higher spacing (i.e., 1.5 cm) produced a stronger acoustic streaming effect than the lower one (i.e., 0.5 cm) for all the twin drop combinations, which indicates higher internal circulation at a larger spacing of 1.5 cm. For all the spacings, the evaporation rate is observed to be proportional to the internal circulation at all twin drop combinations. Further, empirical correlations are developed to predict the evaporation rate and internal circulation for twin drops with different combinations. The study shows that the evaporation and internal circulation follow a universal behavior for all the combinations of twin drops at both the drop spacings, while the higher values are observed at a larger spacing of 1.5 cm compared to the smaller one of 0.5 cm. The paper clearly demonstrates the complex interplay of variables involved in the evaporation / internal circulation of twin methanol drops under the influence of an acoustic field, thus producing a universal behaviour that is independent of their composition for both the drop spacings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.