Abstract

An anechoic end is desired to be implemented on an acoustic test rig. The acoustic impedance can be tuned with active control, such as phase shift control. A precise mathematical description of a system is necessary for phase shift control. However, in some cases, the mathematical model is inaccurate and even impossible to obtain. To overcome the weakness, active disturbance rejection control is proposed as a model-independent strategy and is tested on an identified model and test rig for comparison to phase shift control. The results of the simulation and the experiment show that the performance of phase shift control is strongly influenced by the accuracy of the model, and active disturbance rejection control achieved good performance in the absence of a proper model. Furthermore, a Lyapunov function is constructed to prove the asymptotic stability of active disturbance rejection control, thus ensuring the stability and robustness of the control system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.