Abstract
Acoustic imaging is a new method to construct the acoustic signal at a point on the solar surface or in the solar interior with the signals measured at the solar surface. The constructed signals contain both intensity information and phase information. The intensity is computed by summing the squared amplitude of the constructed signal over time. The phase of constructed signals can be studied by the cross-correlation function between the time series constructed with ingoing waves and outgoing waves. The location of the envelope peak of the cross-correlation function and the phase of the cross-correlation function contain different information on the physical conditions of the plasma along the wave path. From the constructed signals, one can form the two-dimensional outgoing intensity map, absorption map, phase-shift map, and envelope-shift map of a target region at different focal depths. The perturbed physical conditions caused by the magnetic fields of active regions manifest in these maps. The outgoing intensity is lower in magnetic regions than the quiet Sun. The group travel time and phase travel time are smaller in magnetic regions than in the quiet Sun. In this paper, we review the studies of active regions, including emerging flux regions, with acoustic imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.