Abstract

Sensing based on a passive transducer that is wirelessly linked to a nearby data collection node can offer an attractive solution for use in remote, inaccessible, or harsh environments. Here we report a pipe flow sensor based on this principle. A transducer mounted inside the pipe generates an acoustic signal that is picked up by an external microphone. The passive transducer comprises a cavity with a trapped ball that can oscillate in response to flow. Its collisions generate an acoustic signal correlated to the flow speed. The transducer is implemented on a 6 mm diameter probe and characterized as a water flow meter. The time - average microphone voltage output is calculated by an analogue circuit, without any further signal processing. With the microphone mounted on the probe, and for flow rates in the range 0.35 m/s to 6.5 m/s, correlation between the sensor voltage output and flow rate data from a commercial flow meter is demonstrated with a worst-case accuracy of 2%. This was achieved by simple averaging of the acoustic pulse train over a 5-second time interval. Consistent correlation with the microphone mounted on the pipe wall at distances up to 150 mm from the probe location is also reported. These results demonstrate the viability of remote acoustic flow sensing using passive structures and offer a simple and minimally invasive flow monitoring method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call