Abstract
In this paper, we propose a probe signal-based adaptive filtering method for acoustic feedback cancellation (AFC) in hearing aids. The proposed method consists of two adaptive filters. The first adaptive filter is excited by the receiver (loudspeaker) signal, and uses the microphone signal as its desired response. The first adaptive filter shows a fast convergence speed, however, it may converge to a biased solution at the steady-state because its input and desired response are correlated with each other. The second adaptive filter is excited by an internally generated (uncorrelated) probe signal. The two adaptive filters are adapted using a delay-based normalized least mean square (NLMS) algorithm. A strategy is devised to exchange the coefficients of two adaptive filters such that the both adaptive filters give a good (unbiased) estimate of the acoustic feedback path. Furthermore, we propose to vary the gain of the probe signal, such that a high level probe signal is injected during the transient state, and a low level probe signal is used after the AFC system has converged. The computer simulations demonstrate that the proposed method achieves good modeling accuracy, preserves good speech quality, and maintains high output SNR at the steady-state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.