Abstract
Prompted by the Mars Microphone aboard the 1998 Mars Polar Lander, a theoretical study of the acoustical environment of the Martian surface has been made to ascertain how the propagation of sound is attenuated under such conditions and to predict what sounds may be detectable by a microphone. Viscous and thermal relaxation (termed classical absorption), molecular relaxation, and geometric attenuation are considered. Classical absorption is stronger under Martian conditions resulting in sounds in the audible frequencies (20 Hz to 20 kHz) being more strongly attenuated than in the terrestrial environment. The higher frequencies (>3000 Hz) will be severely attenuated as the absorption is frequency dependent. At very low infrasound frequencies (i.e., <10 Hz), attenuation will be mostly due to geometric spreading of the propagating wave front and will therefore be more similar to the terrestrial surface environment. Probable sound sources in the landed environment include wind‐blown dust and sand from large dust storms, dust devils, and possible associated electrostatic discharge. The sounds most likely to be detected will be sounds generated by the lander itself and aeroacoustic noises generated by winds blowing against the lander and its instruments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.