Abstract

We present results from measurement of acoustic emissions (AE) during compression and indentation of natural sea ice in situ. We show that AE amplitudes are associated with load, so that periods of loading and unloading, and cyclic oscillations in loading during indentation, can be determined from AE records as well as from load measurements. We show that AE measured during these experiments obeys Gutenberg-Richter-type scaling laws, implying that the crack distribution within the sea ice is self-similar. We show that b-values, which indicate the ratio of small cracks to large cracks, decrease during loading, tending towards a value around 1 at failure, and increase again when loading is removed. This suggests that AE can be used to measure, non-invasively, damage and healing of natural sea ice. We conclude by discussion practical applications of these results, and opportunities for further development of AE measurement as a tool for understanding cracking in ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.