Abstract

This paper studies acoustic emission (AE) wave propagation in a glass fibre aluminium honeycomb sandwich panel (HSP). Of particular novelty is the quantification of the through-thickness propagation of AE from one surface of the HSP to the other, which is a real-world monitoring consideration for applications where AE instrumentation is only be permissible on one surface, i.e. aerofoils. Complexity was introduced to the specimens in stages to enable a thorough understanding; first investigating propagation in a large glass fibre laminated plate (GFLP) alone; then in bespoke sandwich specimens with a limited number of honeycomb cells; and, finally, in a large HSP. The results of this paper demonstrate that, whilst some energy is transmitted through the honeycomb core, AE propagating in an HSP becomes bound in the outer plates. Despite this, propagation in these outer plates differs to that in an equivalent plate of the same material in isolation due to the complex interactions with the structural elements of the HSP. Further, propagation of AE transmitted from one surface to the other was quantified for the first time, giving insight into expected attenuation rates and characteristics for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.