Abstract

Acoustic emission (AE) source localization is a powerful detection method. Time Difference Mapping (TDM) method is an effective method for detecting defects in complex structures. The core of this method is to search for a point with the minimum distance away from the verification point in the time difference database. In Traditional Time Difference Mapping (T-TDM) method and Improved Time Difference Mapping (I-TDM) method, the larger database and denser grids allow the higher localization accuracy. If the location points are not included in the database, the localization accuracy of the T-TDM and I-TDM methods will be greatly affected. To solve the above problems, a new AE source localization method, Generalized Regression Neural Network Based on Time Difference Mapping (GRNN-TDM), is proposed to improve the localization accuracy in the study. In the proposed method, the time difference data of the sensor path on all nodes in the time difference mapping are used as the training input data and the coordinates of grid nodes are used as the training output data. After continuous learning and training, the neural network model predicts its possible source location with the time difference data collected from the verification point. In this paper, the localization of AE sources with T-TDM, I-TDM and GRNN-TDM methods was studied in four composite plates with different fiber layers and an aluminum plate with holes. The localization results showed that the localization accuracy of the GRNN-TDM method was higher than that of T-TDM and I-TDM methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call