Abstract
Acoustic Emission (AE) is a non-destructive structural health monitoring technique, which studies elastic waves emitted during crack formation. Utilizing piezoelectric sensors, these waves are converted into electrical signals for subsequent analysis, offering insights into crack propagation and structural durability. This study focuses on the identification of AE signal onset times, crucial for determining crack locations. Conventional methods often encounter challenges with background noise, prompting the need for innovative approaches. Leveraging a U-Net neural network, specialized in segmentation tasks, onset time identification is approached as a one-dimensional segmentation challenge. Through training and testing on Pencil Lead Break (PLB) test data, commonly used in AE evaluations, the effectiveness of the method is demonstrated even with continuous signals, suggesting potential applicability in real-time monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.