Abstract

Metamaterials, especially lattice structures, are of great interest for many application areas such as aerospace, automotive and medicine due to their adjustable mechanical properties and their low weight. Due to their complex geometry, lattice structures are usually manufactured additively, which causes a large variance in the manufacturing-related mechanical properties. In order to establish metamaterials in industrial applications under cyclic loading, the fatigue behavior needs to be investigated to evaluate the load capacity of these structures. Here we analyze the fatigue behavior of AlSi10Mg truss structures fabricated with L-PBF using a load increase test in combination with acoustic emission measurements. The acoustic signals are evaluated in terms of time-dependent amplitude signal and frequency spectrum. Increasing load and increasing specimen damage resulted in changes of the acoustic spectrum and the amplitude of the time signal. Based on the results, a correlation of specimen properties with build platform position in the manufacturing process could be established. Acoustic emission measurement as an in situ characterization method during cyclic loading is promising for surveillance of lattice structures in safety related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.