Abstract

Abstract A statistical lattice model was developed to investigate the energy associated with damage and failure of wood. The model incorporates several important morphological aspects of wood such as grain direction, early wood percentage and grain geometry. The model was developed to investigate progressive damage under enforced boundary displacements and has been adapted to predict fracture energy related phenomena. In this particular study, notched specimens were loaded in uniaxial tension while monitored by a passive acoustic emission (AE) measurement system. The energy associated with the mechanical damage was measured by the AE instruments and compared with the energy released by ruptured elements in the lattice model. Cumulative energy release was tracked as a function of specimen load and deformation in both model and experiment. A ratio was established between the cumulative AE energy released at the first drop in load and the cumulative fracture energy released when the model load-deformation relationship becomes significantly non-linear. An additional ratio was established between the total fracture energy measured prior to 50% of peak strain and the total fracture energy measured prior to peak strain. The magnitudes of these energy release ratios vary owing to a change in failure modes between the short model and the larger specimens; however, the shape of the AE energy release curve up to failure coincides well with that predicted by the model simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call