Abstract

The common approach for the localization of acoustic emission sources in beams requires at least two measurements at different positions on the structure. The acoustic emission event is then located by evaluating the difference of the arrival times of the elastic waves. Here a new method is introduced, which allows the detection and localization of multiple acoustic emission sources with only a single, one point, unidirectional measurement. The method makes use of the time reversal principle and the dispersive behavior of the flexural wave mode. Whereas time-of-arrival (TOA) methods struggle with the distortion of elastic waves due to phase dispersion, the method presented uses the dispersive behavior of guided waves to locate the origin of the acoustic emission event. Therefore, the localization algorithm depends solely on the measured wave form and not on arrival time estimation. The method combines an acoustic emission experiment with a numerical simulation, in which the measured and time reversed displacement history is set as the boundary condition.In this paper, the method is described in detail and the feasibility is experimentally demonstrated by breaking pencil leads on aluminum beams and pultruded carbon fiber reinforced plastic beams according to ASTM E976 (Hsu–Nielsen source). It will be shown, that acoustic emissions are successfully localized even on anisotropic structures and in the case of geometrical complexities such as notches, which lead to reflections, and cross sectional changes, which affect the wave speed. The overall relative error in localizing the acoustic emission sources was found to be below 5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call