Abstract

Acoustic waves emitted by a vortex ring interacting with a fixed solid sphere are studied experimentally and theoretically. The experiments are carried out for two kindsof vortex-sphere arrangement: (A) a vortex ring passes over the sphere, and (B) a vortex ring passes by the sphere. The vortex motion is examined optically by means of a photosensor system, and the pressure signals of the emitted wave are detected by ½-inch microphones in the far field. In case A, the measured diameter of the vortex ring after passing the sphere increases from its initial diameter. The observed acoustic wave is dominated mainly by a dipole emission, and some contribution from a quadrupole radiation is present. In case B, the emitted wave is characterized by a rotating dipole emission in which the dipole axis rotates as the vortex position changes relative to the sphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call