Abstract

The use of high-speed methods to measure deformation, load, and the dynamics of deformation bands, as well as the correlation between the intermittent creep characteristics of the AlMg6 aluminum–magnesium alloy and the parameters of the acoustic emission signals, has been studied experimentally. It has been established that the emergence and rapid expansion of the primary deformation band, which generates a characteristic acoustic emission signal in the frequency range of 10–1000 Hz, is a trigger for the development of a deformation step in the creep curve. The results confirm the accuracy of the mechanism of generating an acoustic signal associated with the emergence of a dislocation band on the external surface of the specimen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.