Abstract

This study analyzes acoustic emission (AE) signals during the intergranular corrosion (IGC) process of 316L stainless steel welded joints under different welding currents in boiling nitric acid. IGC generates several AE signals with high AE activity. The AE technique could hardly distinguish IGC in stainless steel welded joints with different welding heat inputs. However, AE signals can effectively distinguish IGC characteristics in different corrosion stages. The IGC resistance of a heat-affected zone is lower than that of a weld zone. The initiation and rapid corrosion stages can be distinguished using AE results and microstructural analysis. Moreover, energy count rate and amplitude are considered to be ideal parameters for characterizing different IGC processes. Two types of signals are detected in the rapid corrosion stage. It can be concluded that grain boundary corrosion and grain separation are the AE sources of type 1 and type 2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.