Abstract

Currently, the periodic inspection of composite tanks is typically achieved via hydrostatic test combined with internal and external visual inspections. Acoustic emission (AE) technology demonstrates a promising nondestructive testing method for damage mode identification and damage assessment. This study focuses on AE signals characteristics and evolution behaviors for used 70 MPa Type IV hydrogen storage tanks during hydrostatic burst tests. AE-based tensile tests for epoxy resin specimen and carbon fiber tow were implemented to obtain characteristics of matrix cracking and fiber breakage. Then, broad-band AE sensors were used to capture AE signals during multi-step loading tests and hydrostatic burst tests. K-means ++ algorithm and wavelet packet transform are performed to cluster AE signals and verify the validity. Combining with tensile tests, three clusters are manifested via matrix cracking, fiber/matrix debonding and fiber breakage according to amplitude, duration, counts and absolute energy. The number of three clustering signals increases with the increase of pressure, showing accumulated and aggravated damage. The sudden appearance of a large number of fiber breakage signals during hydrostatic burst tests suggests that the composite tank structure is becoming mechanically unstable, namely the impending burst failure of the tank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.