Abstract

AbstractIndentation-induced delamination of thin films provides the basis for adhesion calculations. In the case of ductile Cu films plastic deformation usually prevents a film from debonding from the substrate. Deadhesion is facilitated by the use of a hard W superlayer, which promotes indenter-induced Cu film failure, increasing the delamination area by an order of magnitude. Radial as well as annular cracking acts like a secondary mechanism in the strain energy release, and can be resolved from excursions on the load-displacement curves. For the thicker Cu films no excursions were observed, though radial cracking took place. It is important to identify fracture events as they occur in order to understand the system behavior and accurately apply the analysis. An acoustic emission signal is used to detect the magnitude of fracture events in thin Cu films. For the films of different thickness from 40 nm to 3 microns the corresponding interfacial fracture energy ranged from 0.2 to over 100 J/m2. Limits of plastic energy dissipation are determined with the lower limit, the true work of adhesion, being associated with a dislocation emission criterion. Crack arrest marks were found upon the blister removal, and are proposed to represent the shape of the crack tip. Total acoustic emission energy was found to be inversely proportional to the strain energy release rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.