Abstract

Human-generated noises are considered as underwater sound pollution with potential short- or long-term impacts on behavioural responses and physiological reaction of aquatic living organisms. Few investigations are available so far on long-term influences of impulsive and continuous sound sources on physiological response of fish. In the present study, opercula beat rates and pectoral wing rates were monitored as a physiological stress response of ventilation in Nile tilapia (Oreochromis niloticus) exposed to long-term repeated and continued sounds generated from underwater construction work. Fish responded to underwater sound treatment with significantly increased opercula beat—and pectoral wing movements. Maximum ventilation rate was observed as a startle response of fish at initial exposure to underwater sound. The ventilation rates remained at high levels over the first 4 weeks and showed a declining trend thereafter. Fish growth was almost stable for the first 4 weeks, but shifted forward from day 45 onwards. We found strong evidence that fish could attune to repeated playbacks of underwater noise exposures since we found higher specific growth rates for the sound exposed fish from day 45 onwards until day 120, a so-called ‘catch-up growth endeavour’.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.