Abstract

Acoustic droplet vaporization (ADV) has been introduced with the potential application of tumor treatment via occlusion and subsequent necrosis. New Zealand White rabbits were anesthetized, and their left kidney was externalized. An imaging array and single-element transducer were positioned in a tank with direct access to the kidney's vasculature and renal artery. Filtered droplet emulsions (diameter <6 microm) were injected intra-arterially (IA) into the left heart during insonification of the renal artery, and the extent of blood flow reduction by ADV was compared to the untreated right kidney. Flow cytometry (using colored microspheres) of kidney tissue samples and reference blood from the femoral artery allowed the quantitative estimation of regional blood flow. A maximum regional blood flow reduction in the treated region of >90% and an average organ perfusion reduction of >70% was achieved using ADV. After treatment of the left kidney, the control kidney on the contralateral side showed a maximum decrease in regional blood flow of 18% relative to the pre-ADV baseline. Image-based hyper-echogenicity from ADV of IA injections was monitored for approximately 90 minutes, and cortex perfusion was reduced by >60% of its original value for more than 1 hour. This could be enough time for the onset of cell death and possible tumor treatment via ischemic necrosis. Moreover, currently used radiofrequency tissue ablation-based tumor treatment could benefit from ADV due to the decreased heat loss via vascular cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.