Abstract

A virtual design methodology is developed to minimize the noise in enclosures with optimally designed, passive, 20 acoustic absorbers (Helmholtz resonators). A series expansion of eigenfunctions is used to represent the acoustic=20 absorbers as external volume velocities, eliminating the need for a solution of large matrix eigenvalue problems. A determination of this type (efficient model/reevaluation approach) significantly increases the design possibilities when optimization techniques are implemented. As a full-scale demonstration, the acoustic response from 90–190 Hz of a tractor cabin was investigated. The lowest cabin mode proposes a significant challenge to a noise control engineer since its anti-node is located near the head of the operator and often generates unacceptable sound-pressure levels. Exploiting the low-frequency capability of Helmholtz resonators, lumped parameter models of these resonators were coupled to the enclosure via an experimentally determined acoustic model of the tractor cabin. The virtual design methodology uses gradient optimization techniques as a post-processor for the modeling and analysis of the unmodified acoustic interior to determine optimal resonator characteristics. Using two optimally designed Helmholtz resonators, potential energy was experimentally reduced by 3.4 and 10.3 dB at 117 and 167 Hz, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call