Abstract
We examine the effect of acoustic mode confinement on Stimulated Brillouin Scattering in optical waveguides that consist of a guiding core embedded in a solid substrate. We find that SBS can arise due to coupling to acoustic modes in three different regimes. First, the acoustic modes may be guided by total internal reflection; in this case the SBS gain depends directly on the degree of confinement of the acoustic mode in the core, which is in turn determined by the acoustic V-parameter. Second, the acoustic modes may be leaky, but may nevertheless have a sufficiently long lifetime to have a large effect on the SBS gain; the lifetime of acoustic modes in this regime depends not only on the contrast in acoustic properties between the core and the cladding, but is also highly dependent on the waveguide dimensions. Finally SBS may occur due to coupling to free modes, which exist even in the absence of acoustic confinement; we find that the cumulative effect of coupling to these non-confined modes results in significant SBS gain. We show how the different acoustic properties of core and cladding lead to these different regimes, and discuss the feasibility of SBS experiments using different material systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.