Abstract

An acoustic cloak is a compact region enclosing an object, such that sound incident from all directions passes through and around the cloak as though the object was not present. A theory of acoustic cloaking is developed using the transformation or change-of-variables method for mapping the cloaked region to a point with vanishing scattering strength. We show that the acoustical parameters in the cloak must be anisotropic: either the mass density or the mechanical stiffness or both. If the stiffness is isotropic, corresponding to a fluid with a single bulk modulus, then the inertial density must be infinite at the inner surface of the cloak. This requires an infinitely massive cloak. We show that perfect cloaking can be achieved with finite mass through the use of anisotropic stiffness. The generic class of anisotropic material required is known as a pentamode material (PM). If the transformation deformation gradient is symmetric then the PM parameters are explicit, otherwise its properties depend on a stress-like tensor that satisfies a static equilibrium equation. For a given transformation mapping, the material composition of the cloak is not uniquely defined, but the phase speed and wave velocity of the pseudo-acoustic waves in the cloak are unique. Examples are given from two and three dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call