Abstract
Tailoring the phase constitutions of the interfacial reaction layers under the assistance of ultrasonic vibration is a convenient method to fabricate high-strength Al/Cu brazing joints. In this study, 1060-Al and T2-Cu dissimilar metals were ultrasonically brazed with Zn-3Al (wt. %) filler metals. Effects of ultrasonic brazing time on the microstructure and mechanical properties of joints were investigated. Results showed that the CuZn5 intermetallic compound (IMC) layer and Cu-based diffusion layer were created on the Cu substrate surface in the joint ultrasonically brazed at 400 ℃ for 2 s. However, the CuZn5 IMC layer was gradually transformed into a thin Al4.2Cu3.2Zn0.7 IMC layer by increasing the ultrasonic vibration time to 15 s. A well-matched coherent interface was formed between the Al4.2Cu3.2Zn0.7 ternary phase and the Cu-based diffusion layer. The phase transition of the Cu-side interfacial layer correlated closely with the acoustic cavitations induced super-saturation regions near the Cu substrate surface. The measured tensile strength of the Al/Zn-3Al/Cu joint ultrasonically brazed for 15 s was 89.3 MPa, which was approximately 2.5 times higher than that brazed for 2 s, and the tensile failure mainly occurred at the interface between the Al4.2Cu3.2Zn0.7 layer and the Cu-based diffusion layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.